Gravitational Force, Potential Energy, and Potential Worksheet

- 1. What is the speed of a satellite that orbits the earth at a height of 500 km? How long does it take to go around the earth once?
- 2. A satellite that always looks down at the same spot on the earth's surface is called a geosynchronous satellite. Find the distance of this satellite from the surface of the earth.
- 3. What is the gravitational potential energy stored in the gravitational field between the earth and the moon?
- 4. What is the earth's gravitational potential at the position of the moon? (Orbital radius of the moon = 3.84×10^8 m)
- 5. What is the gravitational potential energy of a 500 kg satellite placed at a distance from the earth center equal to 5 earth radii? What is the gravitational potential at that distance?
- 6. Prove that the total energy of the earth (mass m) as it orbits the sun (mass M) is $E = -\frac{1}{2}mv^2$ or $E = -\frac{GMm}{2r}$, where r is the radius of the earth's circular orbit.
- 7. Show that the escape speed from the surface of a planet of radius R can be written as $v_{esc} = \sqrt{2gR}$, where g is the gravitational field strength on the planet's surface.
- 8. Consider two particles of mass m and 16m separated by a distance d.
 (a) Deduce that at point P, a distance d/5 from the particle with mass m, the gravitational field strength is zero.
 (b) Determine the gravitational potential at P.
- 9. Deduce that a satellite orbiting a planet of mass M in a circular orbit of radius r has a period of revolution given by $T = \sqrt{\frac{4\pi^2 r^3}{GM}}$.
- 10. The acceleration of free fall at the surface of a planet is g and the radius of the planet is R. Deduce that the period of a satellite in a very low orbit ($\approx R$) is given by $T = 2\pi \sqrt{\frac{R}{g}}$.

Nur	nerical Answers		
1.	7.61x10 ³ ms ⁻¹ ; 5680 s (94.6 min)	5.	-6.25x10 ⁹ J; -1.25x10 ⁷ Jkg ⁻¹
2.	$3.59 \times 10^7 \text{ m}$	0	25 <i>Gm</i>
3.	$-7.63 \times 10^{28} \text{ J}$	8.	(b) $V = - \frac{d}{d}$
4.	$-1.04 ext{x} 10^{6} ext{ Jkg}^{-1}$		u